Electrolysis Problems Continue to Mount
There’s a Downside to the Electronics Revolution

By Ralph McDarmont, Managing Editor of Radiator Reporter

Reprinted from the August 1998 issue of Radiator Reporter
(August 1998, Volume 26, Number 8, Page 1998-85)

Nowhere is the impact of electronics more obvious than in the automotive world. Today’s cars and trucks are packed with motors, sensors, and task-specific micro-processors, and while the gadgets are interesting if not always practical, they have greatly complicated the task of diagnosing and repairing today’s vehicles. In fact, the proliferation of electronic gadgetry, under the hood as well as under the dash, has triggered a whole new set of vehicle problems and diagnostic challenges.

Take electrolysis, for example. Before the days of front wheel drive and transverse-mounted engines, cooling system electrolysis was a rare occurrence. But today, with most cars and many light-duty trucks featuring electric cooling fans in conjunction with ungrounded plastic-tank radiators, cooling system electrolysis is becoming a frequent problem.

Electrolysis occurs when electrical current routes itself through the engine’s coolant in search of electrical ground. Current can be introduced into the cooling system in many ways, but the two most common causes are a poor ground to the radiator’s electric cooling fan, or a poor ground from the starter motor and engine block to the battery. Any vehicle with accessories bolted to the radiator support or to a nearby component is also a good candidate for electrolysis.

The Causes and Effects of Electrolysis
Electrolysis is a fast-acting menace that attacks not only radiators and heaters, but can destroy an entire engine in a mere 20,000 miles. Though a small amount of measurable voltage can be detected in most engine cooling systems, due to reactions between the coolant and cooling system metals, the detected voltage should never exceed a tenth of a volt in vehicles equipped with aluminum engine blocks and/or cylinder heads.

Cast iron engines and cooling system components can tolerate higher stray voltages, perhaps as much as three-tenths of a volt. But that doesn’t mean three-tenths of a volt is acceptable. It’s not.

In cases of electrolysis, a defective or missing ground on an electrical device causes the electricity to seek the path of least resistance whenever the component is energized. Sometimes the path of least resistance is a radiator or heater hose, or the radiator or heater core. As the current draw of the poorly grounded accessory increases, so does the destructiveness of electrolysis.

A poorly grounded engine and starter motor can zap enough current through the cooling system to blast apart a heater or radiator in a matter of weeks or even days, depending on how often the vehicle is started. A partially grounded electric cooling fan, on the other hand, may only shoot a small percentage of its supply voltage through a cooling system, and the effect may take months to reveal itself.

Evidence of electrolysis includes unexplained and/or the recurring pinhole leaks in a radiator or heater. Pinholes may form anywhere along the tubes or tank walls, but damage is often concentrated at tube-to-header joints, or in the tube walls near the center of the core, where the electric cooling fan mounts come in contact with the core.

Simple Shop Test for Electrolysis
To test for electrolysis, connect the negative probe of a digital D.C. voltmeter to the battery’s negative post. Then submerge the meter’s positive probe into the coolant at the filler neck. Be sure that the positive probe does not touch any metal.
Next, note the meter reading, which should be no more than 0.10 volts. If a higher voltage is detected, methodically shut off or disconnect one electrical component or accessory at a time while watching the voltmeter. When the voltage reading drops to zero, you’ve pinpointed the electrical component with the defective or missing ground. Since electrolysis might occur only when a certain component is energized, have a helper switch each vehicle component on and off while you observe the voltmeter readings.

To check components or accessories that don’t have an on/off switch, use a long jumper wire connected to the battery’s negative post to provide a temporary ground to each electrical accessory. Ground each component with the jumper wire and watch the meter. If the jumper wire restores a missing or faulty ground, the meter will drop to zero.

Be sure to check for intermittent voltage surges generated by the starter during cranking. To do so, watch the meter as you crank the engine. Any jump in voltage during cranking indicates a loose, faulty, or missing engine ground. Any electrical device with a huge current draw, like a starter motor or radiator cooling fan, will chew up a cooling system far faster than a trickle of voltage from a poorly grounded underhood relay or other low-amperage device.

Static Charges: A Second Cause of Electrolysis

A small number of electrolysis problems have been traced to static buildup somewhere in the vehicle. Likely sources would be rubber-mounted driveline parts, a plastic blower wheel spinning in a plastic HVAC case when the blower motor is improperly grounded, and certain tires. In fact, not too many years ago, Michelin received a rash of complaints from vehicle owners who were getting zapped whenever they stepped from their vehicles. The problem was traced to the tires, which generated a static buildup in the vehicle when driven under certain conditions.

Some of the newest vehicles coming off the assembly lines feature a different type of blower motor circuit which may actually increase the incidence of electrolysis caused by static discharge. Conventional HVAC blower motors are usually wired so that the motor is always grounded and speed is controlled by applying battery voltage to the positive terminal of the motor. Speed is varied by routing the battery voltage through a series of resistors before it gets to the motor. Some newer vehicles, however, are wired so that the HVAC motor is always “hot” with 12 volts from the battery. Speed is controlled by applying a variable ground to the ground-side terminal of the motor.

When an HVAC motor is always grounded, static charges that might form inside the HVAC blower case are likely to “zap” the motor’s housing and then be routed harmlessly to the ground post of the battery. But on vehicles with a variable ground to the HVAC blower, static buildup has nowhere to go, or at the very least it must overcome higher electrical resistance as it travels toward the best available ground. By “best” we mean the “path of least resistance,” a key concept in electronics and the diagnosis of electrolysis. Don’t ground the heat exchanger!

Early on, when electrolysis first cropped up as a problem in cooling systems, many mechanics attempted to solve the problem by grounding the heater or radiator in order to “collect” any stray voltage and route it to battery ground. But mechanics soon discovered that grounding a heat exchanger to “collect” stray current merely accelerated the damage to the heat exchanger. What they really needed, they found, was a way to draw the stray voltage away from the heat exchanger, similar to what boaters do when they install “sacrificial” zinc anodes that collect and dissipate stray electrical current before it chews up a boat’s engine, propeller, or metal hull.

It isn’t practical, nor is it advisable, to install sacrificial zins to protect an automotive cooling system, though several shop owners with a knowledge of boating have inquired about the idea. Instead, the proper repair is to locate and eliminate the
unexplainable pinholes. Yet the root cause to replacing product that has developed
the damage is usually concentrated at the
headers and tube ends, not toward the center
of the core.

Similarly, acidic and/or depleted engine
erosion of the inlet header and tube ends.

and rightly so, but abrasive coolant causes
coolant is often blamed for core failures,
unexplained core failures. Abrasive
time, rad shop owners are left with a lot of
core tubewall failure cannot be pinned on
manufacturing process and not washed off
triggered by flux residue left over from the
assembly or manufacturing defect.

or more from the header, can’t be classified
down of the tube wall, often several inches
decent tube-to-header joints. But a break-
for coremakers, there is bound to be an occa-
stock used by OEM and aftermarket
cored for an accelerated speed, hitting the inside of
the tube wall with an increased force similar
to the increased force that results when you
narrow the stream of a garden hose nozzle.

One telltale sign of electrolysis and/or
electro-chemical corrosion is discoloration
of the affected area. Aluminum components
usually turn black and pitted, while
copper/brass components are likely to
develop a blue-green corrosion byproduct.
Unfortunately, bad coolant can cause similar
discholoration, so a blackened PTR core
doesn’t always mean electrolysis is to
blame, but it should raise the possibility in
your mind during diagnosis.

For nearly 30 years, Radiator Reporter has
served as the premier technical newsletter
serving the cooling system and mobile
HVAC industries. Radiator Reporter provides
radiator and automotive A/C service shop
owners and vehicle HVAC technicians with
the latest repair tips and shop management
information. Radiator Reporter subscribers
are also granted unlimited exclusive access to
RR’s toll-free “RadHotline” for one-on-one
professional assistance on every facet of radi-
ator repair, A/C service and successful shop
management. Annual subscriptions
to RR are $140 U.S. Multiple year subscrip-
tion discounts are available.
For more information, contact RR
@ 800/433-0785 or visit us online
at www.enginecooling.com to request
a complimentary copy.